Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.414
Filtrar
1.
Cells ; 13(7)2024 Mar 28.
Artículo en Inglés | MEDLINE | ID: mdl-38607030

RESUMEN

Cockayne syndrome (CS) is a rare hereditary autosomal recessive disorder primarily caused by mutations in Cockayne syndrome protein A (CSA) or B (CSB). While many of the functions of CSB have been at least partially elucidated, little is known about the actual developmental dysregulation in this devasting disorder. Of particular interest is the regulation of cerebral development as the most debilitating symptoms are of neurological nature. We generated neurospheres and cerebral organoids utilizing Cockayne syndrome B protein (CSB)-deficient induced pluripotent stem cells derived from two patients with distinct severity levels of CS and healthy controls. The transcriptome of both developmental timepoints was explored using RNA-Seq and bioinformatic analysis to identify dysregulated biological processes common to both patients with CS in comparison to the control. CSB-deficient neurospheres displayed upregulation of the VEGFA-VEGFR2 signalling pathway, vesicle-mediated transport and head development. CSB-deficient cerebral organoids exhibited downregulation of brain development, neuron projection development and synaptic signalling. We further identified the upregulation of steroid biosynthesis as common to both timepoints, in particular the upregulation of the cholesterol biosynthesis branch. Our results provide insights into the neurodevelopmental dysregulation in patients with CS and strengthen the theory that CS is not only a neurodegenerative but also a neurodevelopmental disorder.


Asunto(s)
Síndrome de Cockayne , Células Madre Pluripotentes Inducidas , Humanos , Células Madre Pluripotentes Inducidas/metabolismo , ADN Helicasas/genética , Enzimas Reparadoras del ADN/metabolismo , Síndrome de Cockayne/genética , Síndrome de Cockayne/metabolismo , Proteínas de Unión a Poli-ADP-Ribosa/genética , Proteínas de Unión a Poli-ADP-Ribosa/metabolismo , Encéfalo/metabolismo , Organoides/metabolismo
2.
CNS Neurosci Ther ; 30(4): e14711, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38644551

RESUMEN

OBJECTIVE: To elucidate the relationship between USP19 and O(6)-methylguanine-DNA methyltransferase (MGMT) after temozolomide treatment in glioblastoma (GBM) patients with chemotherapy resistance. METHODS: Screening the deubiquitinase pannel and identifying the deubiquitinase directly interacts with and deubiquitination MGMT. Deubiquitination assay to confirm USP19 deubiquitinates MGMT. The colony formation and tumor growth study in xenograft assess USP19 affects the GBM sensitive to TMZ was performed by T98G, LN18, U251, and U87 cell lines. Immunohistochemistry staining and survival analysis were performed to explore how USP19 is correlated to MGMT in GBM clinical management. RESULTS: USP19 removes the ubiquitination of MGMT to facilitate the DNA methylation damage repair. Depletion of USP19 results in the glioblastoma cell sensitivity to temozolomide, which can be rescued by overexpressing MGMT. USP19 is overexpressed in glioblastoma patient samples, which positively correlates with the level of MGMT protein and poor prognosis in these patients. CONCLUSION: The regulation of MGMT ubiquitination by USP19 plays a critical role in DNA methylation damage repair and GBM patients' temozolomide chemotherapy response.


Asunto(s)
Antineoplásicos Alquilantes , Metilación de ADN , Metilasas de Modificación del ADN , Enzimas Reparadoras del ADN , Resistencia a Antineoplásicos , Temozolomida , Proteínas Supresoras de Tumor , Humanos , Temozolomida/farmacología , Temozolomida/uso terapéutico , Enzimas Reparadoras del ADN/metabolismo , Enzimas Reparadoras del ADN/genética , Metilasas de Modificación del ADN/metabolismo , Antineoplásicos Alquilantes/farmacología , Antineoplásicos Alquilantes/uso terapéutico , Animales , Línea Celular Tumoral , Resistencia a Antineoplásicos/efectos de los fármacos , Resistencia a Antineoplásicos/genética , Proteínas Supresoras de Tumor/metabolismo , Proteínas Supresoras de Tumor/genética , Metilación de ADN/efectos de los fármacos , Ratones Desnudos , Neoplasias Encefálicas/tratamiento farmacológico , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/metabolismo , Glioblastoma/tratamiento farmacológico , Glioblastoma/genética , Glioblastoma/metabolismo , Ratones , Masculino , Femenino , Dacarbazina/análogos & derivados , Dacarbazina/farmacología , Dacarbazina/uso terapéutico , Reparación del ADN/efectos de los fármacos , Endopeptidasas/metabolismo , Endopeptidasas/genética , Ensayos Antitumor por Modelo de Xenoinjerto , Ubiquitinación/efectos de los fármacos
3.
Int J Mol Sci ; 25(6)2024 Mar 07.
Artículo en Inglés | MEDLINE | ID: mdl-38542081

RESUMEN

Breast cancer (BC) and ovarian cancer (OC) are rapidly increasing in Saudi Arabia. BRCA1 and MGMT epimutations have been linked to a higher risk of these malignancies. The present research investigated the impact of these epimutations on the prevalence of BC and OC among Saudi women. DNA methylation was evaluated using methylation-specific PCR, whereas mRNA expression levels were assessed using qRT-PCR. We evaluated white blood cell (WBC)-BRCA1 methylation in 1958 Saudi women (908 BC patients, 223 OC patients, and 827 controls). MGMT methylation was determined in 1534 of the 1958 women (700 BC patients, 223 OC patients, and 611 controls). BRCA1 methylation was detected in 8.6% of the controls and 11% of the BC patients. This epimutation was linked to 13.8% of the early-onset BC patients (p = 0.003) and 20% of the triple-negative breast cancer (TNBC) patients (p = 0.0001). BRCA1 methylation was also detected in 14% of the OC patients (p = 0.011), 19.4% of patients aged <55 years (p = 0.0007), and 23.4% of high-grade serous ovarian cancer (HGSOC) patients. In contrast, the BRCA1 mutation was detected in 24% of the OC patients, 27.4% of patients aged ≥55 years, and 26.7% of the HGSOC patients. However, MGMT methylation was detected in 10% of the controls and 17.4% of the BC patients (p = 0.0003). This epimutation was linked to 26.4% of the late-onset BC patients (p = 0.0001) and 11% of the TNBC patients. MGMT methylation was also found in 15.2% of the OC patients (p = 0.034) and 19.1% of HGSOC patients (p = 0.054). Furthermore, 36% of the BRCA1-methylated patients and 34.5% of the MGMT-methylated patients had a family history of cancer, including breast and ovarian cancer. Notably, BRCA1 and MGMT mRNA levels were greater in the WBC RNA of the BC patients and cancer-free methylation carriers than in that of the OC patients. Our data indicate that BRCA1 and MGMT epimutations significantly contribute to the development of breast cancer and ovarian cancer in Saudi cancer patients. These blood-based biomarkers could help identify female patients at high risk of developing TNBC and HGSOC at an early age.


Asunto(s)
Neoplasias de la Mama , Neoplasias Ováricas , Neoplasias de la Mama Triple Negativas , Femenino , Humanos , Neoplasias de la Mama Triple Negativas/epidemiología , Neoplasias de la Mama Triple Negativas/genética , Neoplasias de la Mama/metabolismo , Arabia Saudita/epidemiología , Regiones Promotoras Genéticas , Proteína BRCA1/genética , Proteína BRCA1/metabolismo , Metilación de ADN , Factores de Riesgo , Neoplasias Ováricas/epidemiología , Neoplasias Ováricas/genética , Neoplasias Ováricas/patología , ARN Mensajero/genética , ARN Mensajero/metabolismo , Predisposición Genética a la Enfermedad , Metilasas de Modificación del ADN/genética , Metilasas de Modificación del ADN/metabolismo , Proteínas Supresoras de Tumor/genética , Proteínas Supresoras de Tumor/metabolismo , Enzimas Reparadoras del ADN/genética , Enzimas Reparadoras del ADN/metabolismo
4.
Dokl Biochem Biophys ; 515(1): 41-47, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38472668

RESUMEN

High-throughput ribosome profiling demonstrates the translation of thousands of small open reading frames located in the 5' untranslated regions of messenger RNAs (upstream ORFs). Upstream ORF can both perform a regulatory function by influencing the translation of the downstream main ORF and encode a small functional protein or microprotein. In this work, we showed that the 5' untranslated region of the PRPF19 mRNA encodes an upstream ORF that is translated in human cells. Inactivation of this upstream ORF reduces the viability of human cells.


Asunto(s)
Biosíntesis de Proteínas , Ribosomas , Humanos , ARN Mensajero/genética , ARN Mensajero/metabolismo , Ribosomas/metabolismo , Sistemas de Lectura Abierta , Regiones no Traducidas 5' , Factores de Empalme de ARN/genética , Factores de Empalme de ARN/metabolismo , Proteínas Nucleares/metabolismo , Enzimas Reparadoras del ADN/genética , Enzimas Reparadoras del ADN/metabolismo
5.
J Med Chem ; 67(4): 2425-2437, 2024 Feb 22.
Artículo en Inglés | MEDLINE | ID: mdl-38346097

RESUMEN

Temozolomide (TMZ) is a DNA alkylating agent that produces objective responses in patients with neuroendocrine tumors (NETs) when the DNA repair enzyme O6-methylguanine-DNA methyltransferase (MGMT) is inactivated. At high doses, TMZ therapy exhausts MGMT activity but also produces dose-limiting toxicities. To reduce off-target effects, we converted the clinically approved radiotracer 68Ga-DOTA-TOC into a peptide-drug conjugate (PDC) for targeted delivery of TMZ to somatostatin receptor subtype-2 (SSTR2)-positive tumor cells. We used an integrated radiolabeling strategy for direct quantitative assessment of receptor binding, pharmacokinetics, and tissue biodistribution. In vitro studies revealed selective binding to SSTR2-positive cells with high affinity (5.98 ± 0.96 nmol/L), internalization, receptor-dependent DNA damage, cytotoxicity, and MGMT depletion. Imaging and biodistribution analysis showed preferential accumulation of the PDC in receptor-positive tumors and high renal clearance. This study identified a trackable SSTR2-targeting system for TMZ delivery and utilizes a modular design that could be broadly applied in PDC development.


Asunto(s)
Dacarbazina , Receptores de Somatostatina , Humanos , Temozolomida/farmacología , Dacarbazina/farmacología , Dacarbazina/uso terapéutico , Receptores de Somatostatina/metabolismo , Distribución Tisular , O(6)-Metilguanina-ADN Metiltransferasa/genética , O(6)-Metilguanina-ADN Metiltransferasa/metabolismo , Enzimas Reparadoras del ADN/metabolismo , Metilasas de Modificación del ADN/metabolismo , Antineoplásicos Alquilantes/farmacología , Línea Celular Tumoral
6.
Nucleic Acids Res ; 52(6): 3146-3163, 2024 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-38349040

RESUMEN

Sensing and processing of DNA double-strand breaks (DSBs) are vital to genome stability. DSBs are primarily detected by the ATM checkpoint pathway, where the Mre11-Rad50-Nbs1 (MRN) complex serves as the DSB sensor. Subsequent DSB end resection activates the ATR checkpoint pathway, where replication protein A, MRN, and the Rad9-Hus1-Rad1 (9-1-1) clamp serve as the DNA structure sensors. ATR activation depends also on Topbp1, which is loaded onto DNA through multiple mechanisms. While different DNA structures elicit specific ATR-activation subpathways, the regulation and mechanisms of the ATR-activation subpathways are not fully understood. Using DNA substrates that mimic extensively resected DSBs, we show here that MRN and 9-1-1 redundantly stimulate Dna2-dependent long-range end resection and ATR activation in Xenopus egg extracts. MRN serves as the loading platform for ATM, which, in turn, stimulates Dna2- and Topbp1-loading. Nevertheless, MRN promotes Dna2-mediated end processing largely independently of ATM. 9-1-1 is dispensable for bulk Dna2 loading, and Topbp1 loading is interdependent with 9-1-1. ATR facilitates Mre11 phosphorylation and ATM dissociation. These data uncover that long-range end resection activates two redundant pathways that facilitate ATR checkpoint signaling and DNA processing in a vertebrate system.


Asunto(s)
Proteínas de la Ataxia Telangiectasia Mutada , Roturas del ADN de Doble Cadena , Enzimas Reparadoras del ADN , Proteínas de Xenopus , Animales , Proteínas de la Ataxia Telangiectasia Mutada/genética , Proteínas de la Ataxia Telangiectasia Mutada/metabolismo , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , ADN/genética , ADN/metabolismo , Enzimas Reparadoras del ADN/genética , Enzimas Reparadoras del ADN/metabolismo , Proteína Homóloga de MRE11/genética , Proteína Homóloga de MRE11/metabolismo , Proteínas Supresoras de Tumor/genética , Proteínas Supresoras de Tumor/metabolismo , Xenopus laevis/genética , Proteínas de Xenopus/genética , Proteínas de Xenopus/metabolismo , Proteínas Cromosómicas no Histona/genética , Proteínas Cromosómicas no Histona/metabolismo , Activación Enzimática/genética , Fosforilación/genética
7.
Nucleic Acids Res ; 52(5): 2372-2388, 2024 Mar 21.
Artículo en Inglés | MEDLINE | ID: mdl-38214234

RESUMEN

Pediatric high-grade gliomas (pHGG) are devastating and incurable brain tumors with recurrent mutations in histone H3.3. These mutations promote oncogenesis by dysregulating gene expression through alterations of histone modifications. We identify aberrant DNA repair as an independent mechanism, which fosters genome instability in H3.3 mutant pHGG, and opens new therapeutic options. The two most frequent H3.3 mutations in pHGG, K27M and G34R, drive aberrant repair of replication-associated damage by non-homologous end joining (NHEJ). Aberrant NHEJ is mediated by the DNA repair enzyme polynucleotide kinase 3'-phosphatase (PNKP), which shows increased association with mutant H3.3 at damaged replication forks. PNKP sustains the proliferation of cells bearing H3.3 mutations, thus conferring a molecular vulnerability, specific to mutant cells, with potential for therapeutic targeting.


Asunto(s)
Neoplasias Encefálicas , Glioma , Histonas , Niño , Humanos , Neoplasias Encefálicas/patología , Reparación del ADN/genética , Enzimas Reparadoras del ADN/metabolismo , Glioma/patología , Histonas/genética , Histonas/metabolismo , Mutación , Fosfotransferasas (Aceptor de Grupo Alcohol)/genética
8.
Nucleic Acids Res ; 52(5): 2416-2433, 2024 Mar 21.
Artículo en Inglés | MEDLINE | ID: mdl-38224455

RESUMEN

Mammalian polynucleotide kinase 3'-phosphatase (PNKP), a DNA end-processing enzyme with 3'-phosphatase and 5'-kinase activities, is involved in multiple DNA repair pathways, including base excision (BER), single-strand break (SSBR), and double-strand break repair (DSBR). However, little is known as to how PNKP functions in such diverse repair processes. Here we report that PNKP is acetylated at K142 (AcK142) by p300 constitutively but at K226 (AcK226) by CBP, only after DSB induction. Co-immunoprecipitation analysis using AcK142 or AcK226 PNKP-specific antibodies showed that AcK142-PNKP associates only with BER/SSBR, and AcK226 PNKP with DSBR proteins. Despite the modest effect of acetylation on PNKP's enzymatic activity in vitro, cells expressing non-acetylable PNKP (K142R or K226R) accumulated DNA damage in transcribed genes. Intriguingly, in striatal neuronal cells of a Huntington's Disease (HD)-based mouse model, K142, but not K226, was acetylated. This is consistent with the reported degradation of CBP, but not p300, in HD cells. Moreover, transcribed genomes of HD cells progressively accumulated DSBs. Chromatin-immunoprecipitation analysis demonstrated the association of Ac-PNKP with the transcribed genes, consistent with PNKP's role in transcription-coupled repair. Thus, our findings demonstrate that acetylation at two lysine residues, located in different domains of PNKP, regulates its distinct role in BER/SSBR versus DSBR.


Asunto(s)
Enzimas Reparadoras del ADN , Fosfotransferasas (Aceptor de Grupo Alcohol) , Animales , Humanos , Ratones , Acetilación , Daño del ADN , Reparación del ADN , Enzimas Reparadoras del ADN/metabolismo , Mamíferos/metabolismo , Fosfotransferasas (Aceptor de Grupo Alcohol)/química , Polinucleótido 5'-Hidroxil-Quinasa/genética
9.
Oncotarget ; 15: 1-18, 2024 Jan 16.
Artículo en Inglés | MEDLINE | ID: mdl-38227740

RESUMEN

Glioblastoma cells can restrict the DNA-damaging effects of temozolomide (TMZ) and radiation therapy (RT) using the DNA damage response (DDR) mechanism which activates cell cycle arrest and DNA repair pathways. Ataxia-telangiectasia and Rad3-Related protein (ATR) plays a pivotal role in the recognition of DNA damage induced by chemotherapy and radiation causing downstream DDR activation. Here, we investigated the activity of gartisertib, a potent ATR inhibitor, alone and in combination with TMZ and/or RT in 12 patient-derived glioblastoma cell lines. We showed that gartisertib alone potently reduced the cell viability of glioblastoma cell lines, where sensitivity was associated with the frequency of DDR mutations and higher expression of the G2 cell cycle pathway. ATR inhibition significantly enhanced cell death in combination with TMZ and RT and was shown to have higher synergy than TMZ+RT treatment. MGMT promoter unmethylated and TMZ+RT resistant glioblastoma cells were also more sensitive to gartisertib. Analysis of gene expression from gartisertib treated glioblastoma cells identified the upregulation of innate immune-related pathways. Overall, this study identifies ATR inhibition as a strategy to enhance the DNA-damaging ability of glioblastoma standard treatment, while providing preliminary evidence that ATR inhibition induces an innate immune gene signature that warrants further investigation.


Asunto(s)
Neoplasias Encefálicas , Glioblastoma , Humanos , Temozolomida/farmacología , Temozolomida/uso terapéutico , Glioblastoma/tratamiento farmacológico , Glioblastoma/genética , Glioblastoma/radioterapia , Dacarbazina/farmacología , Dacarbazina/uso terapéutico , Antineoplásicos Alquilantes/farmacología , Antineoplásicos Alquilantes/uso terapéutico , Proteínas Supresoras de Tumor/metabolismo , Muerte Celular , Línea Celular , ADN , Línea Celular Tumoral , Metilasas de Modificación del ADN/genética , Metilasas de Modificación del ADN/metabolismo , Enzimas Reparadoras del ADN/genética , Enzimas Reparadoras del ADN/metabolismo , Neoplasias Encefálicas/tratamiento farmacológico , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/radioterapia , Proteínas de la Ataxia Telangiectasia Mutada/genética , Proteínas de la Ataxia Telangiectasia Mutada/metabolismo
10.
Microbiol Spectr ; 12(2): e0256222, 2024 Feb 06.
Artículo en Inglés | MEDLINE | ID: mdl-38230952

RESUMEN

Assembly of infectious hepatitis C virus (HCV) particles requires multiple cellular proteins including for instance apolipoprotein E (ApoE). To describe these protein-protein interactions, we performed an affinity purification mass spectrometry screen of HCV-infected cells. We used functional viral constructs with epitope-tagged envelope protein 2 (E2), protein (p) 7, or nonstructural protein 4B (NS4B) as well as cells expressing a tagged variant of ApoE. We also evaluated assembly stage-dependent remodeling of protein complexes by using viral mutants carrying point mutations abrogating particle production at distinct steps of the HCV particle production cascade. Five ApoE binding proteins, 12 p7 binders, 7 primary E2 interactors, and 24 proteins interacting with NS4B were detected. Cell-derived PREB, STT3B, and SPCS2 as well as viral NS2 interacted with both p7 and E2. Only GTF3C3 interacted with E2 and NS4B, highlighting that HCV assembly and replication complexes exhibit largely distinct interactomes. An HCV core protein mutation, preventing core protein decoration of lipid droplets, profoundly altered the E2 interactome. In cells replicating this mutant, E2 interactions with HSPA5, STT3A/B, RAD23A/B, and ZNF860 were significantly enhanced, suggesting that E2 protein interactions partly depend on core protein functions. Bioinformatic and functional studies including STRING network analyses, RNA interference, and ectopic expression support a role of Rad23A and Rad23B in facilitating HCV infectious virus production. Both Rad23A and Rad23B are involved in the endoplasmic reticulum (ER)-associated protein degradation (ERAD). Collectively, our results provide a map of host proteins interacting with HCV assembly proteins, and they give evidence for the involvement of ER protein folding machineries and the ERAD pathway in the late stages of the HCV replication cycle.IMPORTANCEHepatitis C virus (HCV) establishes chronic infections in the majority of exposed individuals. This capacity likely depends on viral immune evasion strategies. One feature likely contributing to persistence is the formation of so-called lipo-viro particles. These peculiar virions consist of viral structural proteins and cellular lipids and lipoproteins, the latter of which aid in viral attachment and cell entry and likely antibody escape. To learn about how lipo-viro particles are coined, here, we provide a comprehensive overview of protein-protein interactions in virus-producing cells. We identify numerous novel and specific HCV E2, p7, and cellular apolipoprotein E-interacting proteins. Pathway analyses of these interactors show that proteins participating in processes such as endoplasmic reticulum (ER) protein folding, ER-associated protein degradation, and glycosylation are heavily engaged in virus production. Moreover, we find that the proteome of HCV replication sites is distinct from the assembly proteome, suggesting that transport process likely shuttles viral RNA to assembly sites.


Asunto(s)
Hepacivirus , Hepatitis C , Humanos , Hepacivirus/genética , Proteínas no Estructurales Virales/genética , Proteoma/metabolismo , Línea Celular , Apolipoproteínas E/metabolismo , Apolipoproteínas/metabolismo , Proteínas de Unión al ADN/metabolismo , Enzimas Reparadoras del ADN/metabolismo
11.
mBio ; 15(2): e0307123, 2024 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-38265236

RESUMEN

The accessory protein ORF6 of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a key interferon (IFN) antagonist that strongly suppresses the production of primary IFN as well as the expression of IFN-stimulated genes. However, how host cells respond to ORF6 remains largely unknown. Our research of ORF6-binding proteins by pulldown revealed that E3 ligase components such as Cullin 4B (CUL4B), DDB1, and RBX1 are potential ORF6-interacting proteins. Further study found that the substrate recognition receptor PRPF19 interacts with CUL4B, DDB1, and RBX1 to form a CRL4B-based E3 ligase, which catalyzes ORF6 ubiquitination and subsequent degradation. Overexpression of PRPF19 promotes ORF6 degradation, releasing ORF6-mediated IFN inhibition, which inhibits SARS-CoV-2 replication. Moreover, we found that activation of CUL4B by the neddylation inducer etoposide alleviates lung lesions in a SARS-CoV-2 mouse infection model. Therefore, targeting ORF6 for degradation may be an effective therapeutic strategy against SARS-CoV-2 infection.IMPORTANCEThe cellular biological function of the ubiquitin-proteasome pathway as an important modulator for the regulation of many fundamental cellular processes has been greatly appreciated. The critical role of the ubiquitin-proteasome pathway in viral pathogenesis has become increasingly apparent. It is a powerful tool that host cells use to defend against viral infection. Some cellular proteins can function as restriction factors to limit viral infection by ubiquitin-dependent degradation. In this research, we identificated of CUL4B-DDB1-PRPF19 E3 Ubiquitin Ligase Complex can mediate proteasomal degradation of ORF6, leading to inhibition of viral replication. Moreover, the CUL4B activator etoposide alleviates disease development in a mouse infection model, suggesting that this agent or its derivatives may be used to treat infections caused by SARS-CoV-2. We believe that these results will be extremely useful for the scientific and clinic communities in their search for cues and preventive measures to combat the COVID-19 pandemic.


Asunto(s)
COVID-19 , Ubiquitina-Proteína Ligasas , Animales , Humanos , Ratones , Proteínas Portadoras/metabolismo , Proteínas Cullin/genética , Enzimas Reparadoras del ADN/metabolismo , Etopósido , Proteínas Nucleares/metabolismo , Pandemias , Complejo de la Endopetidasa Proteasomal/metabolismo , Factores de Empalme de ARN/genética , SARS-CoV-2/metabolismo , Ubiquitina/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo , Ubiquitinación
12.
J Neurooncol ; 166(3): 419-430, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38277015

RESUMEN

BACKGROUND: Glioblastoma (GBM) is the most common primary brain tumor in adults. Despite extensive research and clinical trials, median survival post-treatment remains at 15 months. Thus, all opportunities to optimize current treatments and improve patient outcomes should be considered. A recent retrospective clinical study found that taking TMZ in the morning compared to the evening was associated with a 6-month increase in median survival in patients with MGMT-methylated GBM. Here, we hypothesized that TMZ efficacy depends on time-of-day and O6-Methylguanine-DNA Methyltransferase (MGMT) activity in murine and human models of GBM. METHODS AND RESULTS: In vitro recordings using real-time bioluminescence reporters revealed that GBM cells have intrinsic circadian rhythms in the expression of the core circadian clock genes Bmal1 and Per2, as well as in the DNA repair enzyme, MGMT. Independent measures of MGMT transcript levels and promoter methylation also showed daily rhythms intrinsic to GBM cells. These cells were more susceptible to TMZ when delivered at the daily peak of Bmal1 transcription. We found that in vivo morning administration of TMZ also decreased tumor size and increased body weight compared to evening drug delivery in mice bearing GBM xenografts. Finally, inhibition of MGMT activity with O6-Benzylguanine abrogated the daily rhythm in sensitivity to TMZ in vitro by increasing sensitivity at both the peak and trough of Bmal1 expression. CONCLUSION: We conclude that chemotherapy with TMZ can be dramatically enhanced by delivering at the daily maximum of tumor Bmal1 expression and minimum of MGMT activity and that scoring MGMT methylation status requires controlling for time of day of biopsy.


Asunto(s)
Neoplasias Encefálicas , Glioblastoma , Humanos , Animales , Ratones , Glioblastoma/tratamiento farmacológico , Glioblastoma/genética , Glioblastoma/patología , Temozolomida/farmacología , Temozolomida/uso terapéutico , Dacarbazina/uso terapéutico , Antineoplásicos Alquilantes/farmacología , Antineoplásicos Alquilantes/uso terapéutico , O(6)-Metilguanina-ADN Metiltransferasa/genética , Estudios Retrospectivos , Factores de Transcripción ARNTL/genética , Factores de Transcripción ARNTL/metabolismo , Metilación , Enzimas Reparadoras del ADN/genética , Enzimas Reparadoras del ADN/metabolismo , Metilasas de Modificación del ADN/genética , Metilasas de Modificación del ADN/metabolismo , Metilación de ADN , Neoplasias Encefálicas/tratamiento farmacológico , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patología , Proteínas Supresoras de Tumor/genética , Proteínas Supresoras de Tumor/metabolismo
13.
Mol Cell ; 84(4): 659-674.e7, 2024 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-38266640

RESUMEN

Inactivating mutations in the BRCA1 and BRCA2 genes impair DNA double-strand break (DSB) repair by homologous recombination (HR), leading to chromosomal instability and cancer. Importantly, BRCA1/2 deficiency also causes therapeutically targetable vulnerabilities. Here, we identify the dependency on the end resection factor EXO1 as a key vulnerability of BRCA1-deficient cells. EXO1 deficiency generates poly(ADP-ribose)-decorated DNA lesions during S phase that associate with unresolved DSBs and genomic instability in BRCA1-deficient but not in wild-type or BRCA2-deficient cells. Our data indicate that BRCA1/EXO1 double-deficient cells accumulate DSBs due to impaired repair by single-strand annealing (SSA) on top of their HR defect. In contrast, BRCA2-deficient cells retain SSA activity in the absence of EXO1 and hence tolerate EXO1 loss. Consistent with a dependency on EXO1-mediated SSA, we find that BRCA1-mutated tumors show elevated EXO1 expression and increased SSA-associated genomic scars compared with BRCA1-proficient tumors. Overall, our findings uncover EXO1 as a promising therapeutic target for BRCA1-deficient tumors.


Asunto(s)
Proteína BRCA1 , Neoplasias , Humanos , Proteína BRCA1/metabolismo , Proteína BRCA2/genética , Proteína BRCA2/metabolismo , Daño del ADN , Reparación del ADN , Enzimas Reparadoras del ADN/genética , Enzimas Reparadoras del ADN/metabolismo , Exodesoxirribonucleasas/genética , Exodesoxirribonucleasas/metabolismo , Recombinación Homóloga
14.
Mol Genet Genomic Med ; 12(1): e2295, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37916443

RESUMEN

BACKGROUND: Microcephaly with early-onset seizures (MCSZ) is a neurodevelopmental disorder caused by pathogenic variants in the DNA strand break repair protein, polynucleotide kinase 3'-phosphatase (PNKP). METHODS: We have used whole genome sequencing and Sanger sequencing to identify disease-causing variants, followed by a minigene assay, Western blotting, alkaline comet assay, γH2AX, and ADP-ribose immunofluorescence. RESULTS: Here, we describe a patient with compound heterozygous variants in PNKP, including a missense variant in the DNA phosphatase domain (T323M) and a novel splice acceptor site variant within the DNA kinase domain that we show leads to exon skipping. We show that primary fibroblasts derived from the patient exhibit greatly reduced levels of PNKP protein and reduced rates of DNA single-strand break repair, confirming that the mutated PNKP alleles are dysfunctional. CONCLUSION: The data presented show that the detected compound heterozygous variants result in reduced levels of PNKP protein, which affect the repair of both oxidative and TOP1-induced single-strand breaks, and most likely causes MCSZ in this patient.


Asunto(s)
Enzimas Reparadoras del ADN , Microcefalia , Humanos , Enzimas Reparadoras del ADN/genética , Enzimas Reparadoras del ADN/metabolismo , Microcefalia/genética , Microcefalia/patología , Mutación , Convulsiones/genética , ADN , Monoéster Fosfórico Hidrolasas/genética , Fosfotransferasas (Aceptor de Grupo Alcohol)/genética , Fosfotransferasas (Aceptor de Grupo Alcohol)/metabolismo
15.
Childs Nerv Syst ; 40(1): 233-237, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37733272

RESUMEN

Germline mutations in mismatch repair (MMR) genes (MLH1, MSH2, MSH6, PMS2) can be mono-allelic or biallelic, resulting in a Lynch syndrome (LS) or constitutional mismatch repair deficiency (CMMRD) syndrome respectively. Glioma arising in the setting of MMR deficiency is uncommon. We describe two pediatric patients with high-grade glioma (HGG) and associated MMR protein deficiency. On histomorphology both cases showed HGG with astrocytic morphology and prominent multinucleated tumor cells. On immunohistochemistry, the first case was negative for IDH1 p.R132H showed loss of ATRX and p53 positivity. The second case was positive for IDH1 p.R132H and p53, but showed retained expression of ATRX. The histomorphology in both cases and additionally IDH mutation with retained ATRX in the second case, prompted us to test for MMR protein deficiency which was carried out by immunohistochemistry (IHC). One case revealed an immunostaining pattern suggestive of CMMRD while the other was suggestive of LS. Both the cases showed good response to surgery and radio-chemotherapy in the follow-up available. Our cases highlight the importance of testing for MMR proteins by simple IHC, in the setting of appropriate clinical scenario, histopathological and immunohistochemical findings. The recognition of these tumors is extremely important to guide further treatment and prompt family screening.


Asunto(s)
Neoplasias Colorrectales Hereditarias sin Poliposis , Glioma , Síndromes Neoplásicos Hereditarios , Deficiencia de Proteína , Humanos , Niño , Proteína p53 Supresora de Tumor , Enzimas Reparadoras del ADN/genética , Enzimas Reparadoras del ADN/metabolismo , Endonucleasa PMS2 de Reparación del Emparejamiento Incorrecto/genética , Síndromes Neoplásicos Hereditarios/genética , Neoplasias Colorrectales Hereditarias sin Poliposis/diagnóstico , Neoplasias Colorrectales Hereditarias sin Poliposis/genética , Neoplasias Colorrectales Hereditarias sin Poliposis/patología , Glioma/genética , Homólogo 1 de la Proteína MutL/genética , Homólogo 1 de la Proteína MutL/metabolismo
16.
Cancer Treat Res ; 186: 223-237, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37978139

RESUMEN

The DNA damage response (DDR) protein MTH1 is sanitising the oxidized dNTP pool and preventing incorporation of oxidative damage into DNA and has an emerging role in mitosis. It is a stress-induced protein and often found to be overexpressed in cancer. Mitotic MTH1 inhibitors arrest cells in mitosis and result in incorporation of oxidative damage into DNA and selective killing of cancer cells. Here, I discuss the leading mitotic MTH1 inhibitor TH1579 (OXC-101, karonudib), now being evaluated in clinical trials, and describe its dual effect on mitosis and incorporation of oxidative DNA damage in cancer cells. I describe why MTH1 inhibitors that solely inhibits the enzyme activity fail to kill cancer cells and discuss if MTH1 is a valid target for cancer treatment. I discuss emerging roles of MTH1 in regulating tubulin polymerisation and mitosis and the necessity of developing the basic science insights along with translational efforts. I also give a perspective on how edgetic perturbation is making target validation difficult in the DDR field.


Asunto(s)
Enzimas Reparadoras del ADN , Neoplasias , Humanos , Enzimas Reparadoras del ADN/genética , Enzimas Reparadoras del ADN/metabolismo , Monoéster Fosfórico Hidrolasas/genética , Monoéster Fosfórico Hidrolasas/metabolismo , Neoplasias/tratamiento farmacológico , Neoplasias/genética , ADN/genética , ADN/uso terapéutico , Daño del ADN
17.
Nan Fang Yi Ke Da Xue Xue Bao ; 43(10): 1697-1705, 2023 Oct 20.
Artículo en Chino | MEDLINE | ID: mdl-37933645

RESUMEN

OBJECTIVE: To explore the mechanism through which curcumol reverses primary drug resistance in glioma cells. METHODS: The inhibitory effect of 10, 20, and 40 µg/mL curcumol were observed in human glioma cell lines A172 and U251. UTX-overexpressing glioma cells constructed by lentiviral transfection were treated with curcumol (40 µg/mL), temozolomide (TMZ; 10 µg/mL), or both, and the changes in cell viability, clone formation capacity and apoptosis were assessed using MTT assay, cell clone formation experiment, and flow cytometry; UTX activity in the cells was determined using a UTX detection kit, and the enrichment of UTX and H3K27me3 in the MGMT promoter region was detected with ChiP-qPCR. The protein expressions in glioma cells were detected using Western blotting and immunohistochemistry. In a nude mouse model bearing glioma xenografts, the effects of curcumol (20 mg/kg), TMZ (20 mg/kg) and their combination on tumor growth and expressions of UTX, H3K27me3 and MGMT were evaluated. RESULTS: Curcumol significantly inhibited the proliferation (P<0.05) and promoted apoptosis of cultured glioma cells (P<0.01). Curcumol, but not TMZ, produced significant inhibitory effect on tumor growth in the tumor-bearing mice (P<0.01). Curcumol significantly inhibited UTX activity and increased the expression level of H3K27me3 protein in the glioma cells. UTX overexpression obviously decreased H3K27me3 protein expression and reversed the effects of curcumol on glioma cell proliferation and apoptosis (P<0.01). Curcumol reduced the enrichment of UTX and H3K27me3 in the MGMT promoter region (P<0.05) and decreased MGMT protein expression, which was reversed by UTX overexpression. In both the in vivo and in vitro experiments, curcumol combined with TMZ significantly increased H3K27me3 protein expression in the glioma cells, reduced the expression of its downstream target gene MGMT, and enhanced TMZ sensitivity of the glioma cells. CONCLUSION: Curcumol can enhance glioma cell sensitivity to TMZ by regulating the UTX/MGMT axis.


Asunto(s)
Neoplasias Encefálicas , Glioma , Humanos , Animales , Ratones , Temozolomida/farmacología , Temozolomida/uso terapéutico , Histonas , Línea Celular Tumoral , Glioma/patología , Resistencia a Antineoplásicos , Neoplasias Encefálicas/patología , Antineoplásicos Alquilantes/farmacología , Antineoplásicos Alquilantes/uso terapéutico , Metilasas de Modificación del ADN/genética , Metilasas de Modificación del ADN/metabolismo , Metilasas de Modificación del ADN/farmacología , Proteínas Supresoras de Tumor/genética , Enzimas Reparadoras del ADN/genética , Enzimas Reparadoras del ADN/metabolismo , Enzimas Reparadoras del ADN/uso terapéutico
18.
Int J Mol Sci ; 24(20)2023 Oct 14.
Artículo en Inglés | MEDLINE | ID: mdl-37894860

RESUMEN

Temozolomide (TMZ) is an important first-line treatment for glioblastoma (GBM), but there are limitations to TMZ response in terms of durability and dependence on the promoter methylation status of the DNA repair gene O6-methylguanine DNA methyltransferase (MGMT). MGMT-promoter-hypermethylated (MGMT-M) GBMs are more sensitive to TMZ than MGMT-promoter-hypomethylated (MGMT-UM) GBMs. Moreover, TMZ resistance is inevitable even in TMZ-sensitive MGMT-M GBMs. Hence, epigenetic reprogramming strategies are desperately needed in order to enhance TMZ response in both MGMT-M and MGMT-UM GBMs. In this study, we present novel evidence that the epigenetic reactivation of Tumor Suppressor Candidate 3 (TUSC3) can reprogram sensitivity of GBM stem cells (GSCs) to TMZ irrespective of MGMT promoter methylation status. Interrogation of TCGA patient GBM datasets confirmed TUSC3 promoter regulation of TUSC3 expression and also revealed a strong positive correlation between TUSC3 expression and GBM patient survival. Using a combination of loss-of-function, gain-of-function and rescue studies, we demonstrate that TUSC3 reactivation is associated with enhanced TMZ response in both MGMT-M and MGMT-UM GSCs. Further, we provide novel evidence that the demethylating agent 5-Azacitidine (5-Aza) reactivates TUSC3 expression in MGMT-M GSCs, whereas the combination of 5-Aza and MGMT inhibitor Lomeguatrib is necessary for TUSC3 reactivation in MGMT-UM GSCs. Lastly, we propose a pharmacological epigenetic reactivation strategy involving TUSC3 that leads to significantly prolonged survival in MGMT-M and MGMT-UM orthotopic GSCs models. Collectively, our findings provide a framework and rationale to further explore TUSC3-mediated epigenetic reprogramming strategies that could enhance TMZ sensitivity and outcomes in GBM. Mechanistic and translational evidence gained from such studies could contribute towards optimal design of impactful trials for MGMT-UM GBMs that currently do not have good treatment options.


Asunto(s)
Neoplasias Encefálicas , Glioblastoma , Humanos , Temozolomida/farmacología , Temozolomida/uso terapéutico , Glioblastoma/tratamiento farmacológico , Glioblastoma/genética , Glioblastoma/patología , Dacarbazina/farmacología , Antineoplásicos Alquilantes/farmacología , Antineoplásicos Alquilantes/uso terapéutico , Metilación de ADN , Enzimas Reparadoras del ADN/genética , Enzimas Reparadoras del ADN/metabolismo , Metilasas de Modificación del ADN/genética , Metilasas de Modificación del ADN/metabolismo , O(6)-Metilguanina-ADN Metiltransferasa/genética , Epigénesis Genética , Neoplasias Encefálicas/tratamiento farmacológico , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patología , Línea Celular Tumoral , Proteínas Supresoras de Tumor/genética , Proteínas Supresoras de Tumor/metabolismo
19.
Nat Commun ; 14(1): 6265, 2023 10 07.
Artículo en Inglés | MEDLINE | ID: mdl-37805499

RESUMEN

Accumulation of single stranded DNA (ssDNA) gaps in the nascent strand during DNA replication has been associated with cytotoxicity and hypersensitivity to genotoxic stress, particularly upon inactivation of the BRCA tumor suppressor pathway. However, how ssDNA gaps contribute to genotoxicity is not well understood. Here, we describe a multi-step nucleolytic processing of replication stress-induced ssDNA gaps which converts them into cytotoxic double stranded DNA breaks (DSBs). We show that ssDNA gaps are extended bidirectionally by MRE11 in the 3'-5' direction and by EXO1 in the 5'-3' direction, in a process which is suppressed by the BRCA pathway. Subsequently, the parental strand at the ssDNA gap is cleaved by the MRE11 endonuclease generating a double strand break. We also show that exposure to bisphenol A (BPA) and diethylhexyl phthalate (DEHP), which are widespread environmental contaminants due to their use in plastics manufacturing, causes nascent strand ssDNA gaps during replication. These gaps are processed through the same mechanism described above to generate DSBs. Our work sheds light on both the relevance of ssDNA gaps as major determinants of genomic instability, as well as the mechanism through which they are processed to generate genomic instability and cytotoxicity.


Asunto(s)
Reparación del ADN , Exodesoxirribonucleasas , Humanos , Exodesoxirribonucleasas/metabolismo , Endonucleasas/genética , Endonucleasas/metabolismo , ADN/genética , Inestabilidad Genómica , Replicación del ADN , ADN de Cadena Simple/genética , Enzimas Reparadoras del ADN/metabolismo
20.
Med Image Anal ; 90: 102989, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37827111

RESUMEN

The number of studies on deep learning for medical diagnosis is expanding, and these systems are often claimed to outperform clinicians. However, only a few systems have shown medical efficacy. From this perspective, we examine a wide range of deep learning algorithms for the assessment of glioblastoma - a common brain tumor in older adults that is lethal. Surgery, chemotherapy, and radiation are the standard treatments for glioblastoma patients. The methylation status of the MGMT promoter, a specific genetic sequence found in the tumor, affects chemotherapy's effectiveness. MGMT promoter methylation improves chemotherapy response and survival in several cancers. MGMT promoter methylation is determined by a tumor tissue biopsy, which is then genetically tested. This lengthy and invasive procedure increases the risk of infection and other complications. Thus, researchers have used deep learning models to examine the tumor from brain MRI scans to determine the MGMT promoter's methylation state. We employ deep learning models and one of the largest public MRI datasets of 585 participants to predict the methylation status of the MGMT promoter in glioblastoma tumors using MRI scans. We test these models using Grad-CAM, occlusion sensitivity, feature visualizations, and training loss landscapes. Our results show no correlation between these two, indicating that external cohort data should be used to verify these models' performance to assure the accuracy and reliability of deep learning systems in cancer diagnosis.


Asunto(s)
Neoplasias Encefálicas , Aprendizaje Profundo , Glioblastoma , Humanos , Anciano , Glioblastoma/diagnóstico por imagen , Glioblastoma/genética , Metilación , Reproducibilidad de los Resultados , Metilasas de Modificación del ADN/genética , Metilasas de Modificación del ADN/metabolismo , Metilasas de Modificación del ADN/uso terapéutico , Neoplasias Encefálicas/diagnóstico por imagen , Neoplasias Encefálicas/genética , Imagen por Resonancia Magnética/métodos , Proteínas Supresoras de Tumor/genética , Proteínas Supresoras de Tumor/metabolismo , Proteínas Supresoras de Tumor/uso terapéutico , Enzimas Reparadoras del ADN/genética , Enzimas Reparadoras del ADN/metabolismo , Enzimas Reparadoras del ADN/uso terapéutico
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA